Microbiological Reviews

VOLUME 45 ● NUMBER 4 ● DECEMBER 1981

EDITORIAL BOARD

HOWARD V. RICKENBERG, Editor (1984) National Jewish Hospital and Research Center Denver, Colo.

Giovanna Ferro-Luzzi Ames (1982) Priscilla A. Campbell (1983) Ercole Canale-Parola (1981) Rowland H. Davis (1981) Neal B. Groman (1982) Philip E. Hartman (1981) Jeanne S. Poindexter (1982) Norman D. Reed (1983)

Barry P. Rosen (1982) David Schlessinger (1981) Patricia G. Spear (1982) Meyer J. Wolin (1983)

EX OFFICIO

Frederick C. Neidhardt, President (1981-1982) John C. Sherris, President-Elect (1981-1982) J. Mehsen Joseph, Secretary Brinton M. Miller, Treasurer

Walter G. Peter III, Managing Editor Gisella Pollock, Assistant Managing Editor David R. Elwell, Production Editor 1913 I St. NW, Washington, DC 20006

Microbiological Reviews considers for publication both solicited and unsolicited reviews and monographs dealing with all aspects of microbiology. Manuscripts, proposals, and correspondence regarding editorial matters should be addressed to the Editor, Dr. Howard V. Rickenberg, Division of Molecular and Cellular Biology, National Jewish Hospital and Research Center, Denver, CO 80206.

Microbiological Reviews (ISSN 0146-0749) is published quarterly (March, June, September, and December), one volume per year, by the American Society for Microbiology. The nonmember subscription price is \$40 per year; the member subscription price is \$14 per year. Single issues are \$12. Correspondence relating to subscriptions, reprints, defective copies, availability of back issues, lost or late proofs, disposition of submitted manuscripts, and general editorial matters should be directed to the ASM Publications Office, 1913 I St., NW, Washington, DC 20006 (area 202 833-9680).

日本:価格は外貨表示とは関係なく円建。

Second-class postage paid at Washington, DC 20006, and at additional mailing offices. Made in the United States of America.

Copyright © 1981, American Society for Microbiology.

All Rights Reserved.

The code at the top of the first page of an article in this journal indicates the copyright owner's consent that copies of the article may be made for personal use, or for personal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per-copy fee through the Copyright Clearance Center, Inc., P.O. Box 765, Schenectady, New York 12301, for copying beyond that permitted by Sections 107 and 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

AUTHOR INDEX

VOLUME 45

Alberghina, Lilia, 99
Apirion, David, 502
Atlas, Ronald M., 180

Bernstein, Carol, 72 Best, D. J., 556 Botsford, James L., 620 Bulla, Lee A., Jr., 379

Clewell, Don B., 409 Collins, Matthew D., 316 Consigli, Richard A., 379

Duckworth, Donna H., 52

Gegenheimer, Peter, 502 Glenn, Jerry, 52 Gordon, Julian, 244

Hammond, R. C., 556 Hederstedt, Lars, 542 Higgins, I. J., 556

Joklik, Wolfgang K., 483 Jones, Dorothy, 316

Koch, Arthur L., 355 Krüger, Detlev H., 9

Marzluf, George A., 437 McCorquodale, D. J., 52 Mims, C. A., 267 Minks, Michael A., 244 Ogawara, Hiroshi, 591

Pall, Martin L., 462 Phillips, Bruce A., 287 Poindexter, Jean Stove, 123 Putnak, J. Robert, 287

Rutberg, Lars, 542

Schroeder, Cornelia, 9 Scolnick, Edward M., 1 Scott, D., 556 Sturani, Emmapaola, 99

Tweeten, Kathleen A., 379

Ward, J. B., 211

SUBJECT INDEX

VOLUME 45

Acetamide utilization	Bacillus subtilis		
fungi, 437	succinate dehydrogenase, 542		
Actinomycetes	Bacteria		
isoprenoid quinones, 316			
Adenosine 3',5'-phosphate	evolution of antibiotic resistance gene function, 355		
fungi, 462	isoprenoid structural types, 316 methane-utilizing, 556		
procaryotes, 620	Bacteriophage		
Adenosine 3',5'-phosphate-binding proteins	DNA repair, 72		
fungi, 462	Bacteriophage λ		
Adenosine 3',5'-phosphate-dependent protein kinase	RNA processing, 502		
animals, 462	Bacteriophage λ lysogens		
fungi, 462	phage replication inhibition, 52		
Adenosylmethionine hydrolase	Bacteriophage BF23		
phage T3 or T7 virus-host cell interactions, 9	Collb factor-induced abortive infection, 52		
Adenovirus transmission	Bacteriophage P2		
vertebrate germ line, 267	abortive infections, 52		
Adenylate cyclase	Bacteriophage P22		
fungi, 462	abortive infections, 52		
procaryotes, 620	Bacteriophage replication inhibition		
Aeration	extrachromosomal genetic elements, 52		
cultivation and nutrition of caulobacters, 123	Bacteriophage T1		
Aerobes	replication inhibition by λ lysogens, 52		
isoprenoid quinones, 316	Bacteriophage T3		
D-Alanine residues, ester-linked	virus-host cell interactions, 9		
teichoic and teichuronic acid biosynthesis, 211	Bacteriophage T4		
Alcaligenes eutrophicus	transfer RNA, 502		
cyclic nucleotides, 620	Bacteriophage T5		
Alkylation products	Collb factor-induced abortive infection, 52		
phage DNA repair, 72	replication inhibition by λ lysogens, 52		
Amino acid levels	Bacteriophage T7		
N. crassa growth, 99	messenger RNAs, 502		
Anaerobes	virus-host cell interactions, 9		
isoprenoid quinones, 316	Bacteriophage W31		
Anemia, equine infectious	inhibition by ColB2, 52		
transmission via vertebrate germ line, 267	Beneckea harveyi		
Antibiotic-producing bacteria	cyclic nucleotides, 620		
antibiotic resistance, 591	Bordetella		
Antibiotic resistance	cyclic nucleotides, 620		
pathogenic bacteria, 591			
producing bacteria, 591	Carbon metabolism		
Antibiotic resistance gene function	methanotrophs, 556		
evolution, 355	Carbon sources		
Antibiotic resistance plasmids	cultivation and nutrition of caulobacters, 123		
influence on phage T3 or T7 multiplication, 9	Caulobacter		
Antigenic properties	taxonomy, 123		
picornavirions, 287	Caulobacters		
Archaebacteria	caulophages, 123		
isoprenoid quinones, 316	cell structure and composition, 123		
Arenavirus transmission	cellular differentiation, 123		
fetal development in mammals, 267	cultivation and nutrition, 123		
vertebrate germ line, 267	distribution, 123		
Arthropods	ecology, 123		
virus transmission via germ line, 267	taxonomy, 123		
Asticcacaulis taxonomy, 123	Caulophage receptors		
taxonomy, 125	caulobacters, 123 Caulophages		
Bacillus licheniformis	host ranges, 123		
teichuronic acid biosynthesis, 211	isolation, 123		
teremuronic acid biosynthesis, 211	iouaviuii, 120		

lysogeny, 123 Endospore-forming rods and cocci transduction, 123 isoprenoid quinones, 316 **Enzymes** isoprenoid quinones, 316 reovirus, 483 Equine infectious anemia transmission Coccobacilli, aerobic gram-negative isoprenoid quinones, 316 vertebrate germ line, 267 Erwinia phage W31 inhibition, 52 cyclic nucleotides, 620 Colicinogenic plasmids Escherichia coli cyclic nucleotides, 620 influence on phage T3 or T7 multiplication, 9 Coliform bacteria, enteric growth and division, 99 cyclic AMP, 620 phage T7 transfection, 9 Collb factor transfer RNA, 502 abortive phage BF23 infection, 52 tsn mutations, 9 Ester-linked D-alanine residues abortive phage T5 infection, 52 Conjugation teichoic and teichuronic acid biosynthesis, 211 caulobacters, 123 Eubacteria isoprenoid quinones, 316 Coryneform bacteria isoprenoid quinones, 316 **Eucaryotes** cell growth and division, 99 Cyclic AMP see Adenosine 3',5'-phosphate Eucaryotic systems Cyclic nucleotides phage T3 or T7 virus-host cell interactions, 9 procaryotes, 620 Evolution antibiotic resistance gene function, 355 Cytomegalovirus transmission fetal development in mammals, 267 Exonucleases phage DNA repair, 72 Extrachromosomal genetic elements Deoxyribonucleic acid phage replication inhibition, 52 caulobacters, 123 Deoxyribonucleic acid, parasitic Fatty acids virus transmission via germ line, vertebrates, 267 methanotrophs, 556 Deoxyribonucleic acid ligase Fetal development, mammals phage DNA repair, 72 virus transmission, 267 phage T3 or T7 virus-host cell interactions, 9 F factor Deoxyribonucleic acid polymerase abortive infection, 52 phage DNA repair, 72 Flagellum phage T3 or T7 virus-host cell interactions, 9 caulobacters, 123 Deoxyribonucleic acid recombination Formaldehyde dehydrogenase phage T3 or T7 virus-host cell interactions, 9 methanotrophs, 556 Deoxyribonucleic acid-relaxing enzymes Formate dehydrogenase phage T3 or T7 virus-host cell interactions, 9 methanotrophs, 556 Deoxyribonucleic acid repair F plasmids phage, 72 influence on phage T3 or T7 multiplication, 9 Deoxyribonucleic acids, phages T3 and T7 Freshwater injection, 9 detection and enumeration of caulobacters, 123 restriction analysis, 9 Fungi Deoxyribonucleic acid synthesis cyclic AMP, 462 caulobacters, 123 gene expression, 437 Deoxyribonucleic acid topoisomerase nitrogen metabolism, 437 phage DNA repair, 72 Deoxyribonucleic acid-unwinding protein phage T3 or T7 virus-host cell interactions, 9 Gene expression Dimorphic procaryotes fungi, 437 cyclic nucleotides, 620 Genetic elements, extrachromosomal Double-stranded-ribonucleic acid-activated enzyme phage replication inhibition, 52 systems Gene transfer interferon action, 244 Streptococcus, 409 Drug resistance Germ line

virus transmission, 267

isoprenoid quinones, 316

Glutamate dehydrogenase

Glutamine synthetase

Gliding bacteria

fungi, 437

fungi, 437

Endonuclease procaryotic RNA processing, 502 Endonucleases phage DNA repair, 72

Streptococcus, 409

iv SUBJECT INDEX MICROBIOL. REV.

Glycosylation

poly(glycerol or ribitol) phosphate teichoic acids,

Glycosyl residues

teichoic acid polymer chains, 211

Gram-negative bacteria isoprenoid quinones, 316

Gram-positive bacteria isoprenoid quinones, 316

Granulosis viruses

applied and molecular aspects, 379

Guanosine 3',5'-phosphate procaryotes, 620 Guanosine tetraphosphate

cyclic AMP metabolism in procaryotes, 620

Haploid mutation and selection

evolution of antibiotic resistance gene function, 355

Helix-destablizing protein phage DNA repair, 72

Herpesvirus transmission

fetal development in mammals, 267

Holdfast

caulobacters, 123

Hormonal effects of adenylate cyclase

fungi, 462

Hydrocarbons, petroleum microbial degradation, 180

Hydrocarbon-utilizing microorganisms

taxonomic relationships, 180

Insect granulosis viruses

applied and molecular aspects, 379

Insecticides

granulosis viruses, 379

Interferon

molecular aspects of induction and action, 244

Isoprenoid quinones bacteria, 316

Isoprenoid structural types

bacteria, 316

 β -Lactam antibiotics

resistance in pathogenic and producing bacteria, 591

Lactic acid bacteria

isoprenoid quinones, 316

Lentivirus transmission

vertebrate germ line, 267

Lipopolysaccharide

cell structure and composition of caulobacters, 123

Lipoteichoic acid carrier

teichoic acid biosynthesis, 211

Lysogenized phage

phage replication inhibition, 52

Mammals

virus transmission during fetal development, 267

Manganese-dependent enzymes

fungi, 462

Membrane binding

succinate dehydrogenase, 542

Messenger ribonucleic acid

phage T3 or T7 virus-host cell interactions, 9

Messenger ribonucleic acids

reovirus, 483

Metals

cultivation and nutrition of caulobacters, 123

Methane monooxygenase

methanotrophs, 556

Methane-oxidizing microorganisms

biology, 556

biotechnological applications, 556

carbon metabolism, 556

energy metabolism, 556

evolution, 556

genetics, 556

nitrogen metabolism, 556

Methanol dehydrogenase

methanotrophs, 556

Methylation, ribonucleic acid

interferon, 244

Micrococcaceae

isoprenoid quinones, 316

Micrococcus luteus

teichuronic acid biosynthesis, 211

Mosquitoes

virus transmission via germ line, 267

Mutation, haploid

evolution of antibiotic resistance gene function, 355

Mycobacterium smegmatis

cyclic nucleotides, 620

Mycoplasma

cyclic nucleotides, 620

Neisseria gonorrhoeae

cyclic nucleotides, 620

Neurospora crassa

growth and nuclear division cycle, 99

Nitrate reductase

fungi, 437

Nitrogen catabolite repression

fungi, 437

Nitrogen fixation

cyclic nucleotides in procaryotes, 620

Nitrogen metabolism

fungi, 437

methanotrophs, 556

Nitrogen sources

cultivation and nutrition of caulobacters, 123

Nucleoid structure

caulobacters, 123

Nucleotide levels

N. crassa growth, 99

Nucleotide precursors

teichoic and teichuronic acids, 211

Nucleotides

cultivation and nutrition of caulobacters, 123

Nucleotides, cyclic

procaryotes, 620

Oil pollutants

microbial degradation, 180

Oncogenic retroviruses, rat-derived

transformation by, 1

Oncovirus transmission

vertebrate germ line, 267

Oxygen microbial degradation of petroleum hydrocarbons, 180	Polymer production methanotrophs, 556 Polyribitol phosphate polymers teichoic acid biosynthesis, 211	
	Postnatal virus transmission, 267	
pAMα1	P1 prophage	
tetracycline resistance determinant, 409	influence on phage T3 or T7 multiplication, 9	
Papovavirus transmission	Pressure	
fetal development in mammals, 267	microbial degradation of petroleum hydrocarbons,	
vertebrate germ line, 267	180	
Parasites	Procaryotes	
oncoviruses, 267	cyclic nucleotides, 620	
Parasitic deoxyribonucleic acid	Procaryotic ribonucleic acid	
virus transmission via germ line, vertebrates, 267 Parvovirus transmission	processing, 502	
fetal development in mammals, 267	Prophage P1 influence on phage T3 or T7 multiplication, 9	
vertebrate germ line, 267	Prostheca	
Pathogenic bacteria	caulobacters, 123	
antibiotic resistance, 591	Protein degradation	
Peptidoglycan	N. crassa growth, 99	
cell structure and composition of caulobacters, 123	Protein kinase, adenosine 3',5'-phosphate-dependent	
linkage to teichoic and teichuronic acids, 211	animals, 462	
Perinatal virus transmission, 267	fungi, 462	
Persistent viruses, transmission	Proteins	
fetal development in mammals, 267	cell structure and composition of caulobacters, 123	
Petroleum hydrocarbons	reoviruses, 483	
microbial degradation, 180	Proteins, picornaviral	
pH	synthesis and processing, 287	
cultivation and nutrition of caulobacters, 123	Pseudomonas aeruginosa	
Phosphate	cyclic nucleotides, 620	
cultivation and nutrition of caulobacters, 123	Purine catabolism	
Phosphodiesterase	fungi, 437	
fungi, 462		
Phospholipids		
cell structure and composition of caulobacters, 123	Quayle cycle	
methanotrophs, 556 Phototrophic bacteria	methanotrophs, 556	
isoprenoid quinones, 316	Quinones, isoprenoid	
Picornavirions	bacteria, 316	
fine structure, 287		
Picornaviruses		
assembly, 287	Rat-derived oncogenic retroviruses	
structure, 287	transformation by, 1	
Pili	Reoviruses	
caulobacters, 123	discovery, 483	
Plants	enzymes, 483	
virus transmission via germ line, 267	proteins, 483	
Plant viruses	RNA transcription, 483	
integration into host cell genome, 267	Reovirus genome	
Plant virus transmission	function, 483	
arthropod germ line, 267	structure, 483	
plant germ line, 267	Reovirus particle	
Plasmids	structure, 483	
evolution of antibiotic resistance gene function, 355 Streptococcus, 409	Retroviruses, rat-derived oncogenic transformation by, 1	
Polar organelles	Retrovirus transmission	
caulobacters, 123	vertebrate germ line, 267	
Pollutants, oil	R factor	
microbial degradation, 180	phage growth inhibition, 52	
Polyadenylated ribonucleic acid	Ribonuclease BN	
N. crassa growth, 99	procaryotic RNA processing, 502	
Polyadenylic acid	Ribonuclease D	
picornavirion RNA, 287	procaryotic RNA processing, 502	
Polyglycerol phosphate polymers	Ribonuclease E	
teichoic acid biosynthesis, 211	procaryotic RNA processing, 502	

VI SOBOLOI INDEA	MICROBIOL. REV.
Ribonuclease M5	Streptococcus
procaryotic RNA processing, 502	drug resistance, 409
Ribonuclease O	gene transfer, 409
procaryotic RNA processing, 502	plasmids, 409
Ribonuclease P	Streptococcus faecalis
procaryotic RNA processing, 502	sex pheromones, 409
Ribonuclease P2	Streptomyces
procaryotic RNA processing, 502	antibiotic resistance, 591
Ribonuclease III	Succinate dehydrogenase
procaryotic RNA processing, 502 Ribonucleic acid	biosynthesis, 542
picornavirus particles, 287	determination of activity, 542 genetics, 542
Ribonucleic acid, procaryotic	membrane binding, 542
processing, 502	structure, 542
Ribonucleic acid cap structure	Swarmer cells
interferon action, 244	caulobacters, 123
Ribonucleic acid methylation	,
interferon, 244	Teichoic acids
Ribonucleic acid primer synthesis	assembly, 211
phage T3 or T7 virus-host cell interactions, 9	biosynthesis, 211
Ribonucleic acid-replicating enzymes	location, 211
picornaviruses, 287 Ribonucleic acid species	Teichuronic acids
N. crassa growth, 99	assembly, 211 biosynthesis, 211
Ribonucleic acid synthesis	location, 211
caulobacters, 123	Temperature
Ribonucleic acid transcription	cultivation and nutrition of caulobacters, 123
reovirus, 483	effect on N. crassa growth, 99
Ribosomal ribonucleic acid	microbial degradation of petroleum hydrocarbons,
N. crassa growth, 99	180
Ribulose monophosphate cycle	Tetracycline resistance determinant
methanotrophs, 556	pAMα1, 409
Rods isoprenoid quinones, 316	T-even phages, rII mutants
Rubella transmission	replication inhibition by λ lysogens, 52 Thymine dimers
fetal development in mammals, 267	phage DNA repair, 72
,,	Ticks
0.11.14	virus transmission via germ line, 267
Salinity	Transcription
microbial degradation of petroleum hydrocarbons, 180	caulobacters, 123
Salmonella typhimurium	Transfer ribonucleic acid
cyclic nucleotides, 620	procaryotes, 502
Sandflies	Translation
virus transmission via germ line, 267	caulobacters, 123 Tricarboxylic acid cycle
Scrapie transmission	methanotrophs, 556
fetal develoment in mammals, 267	Trimethoprim
Seawater	evolution of resistance gene function, 355
detection and enumeration of caulobacters, 123	,
Secondary alcohol dehydrogenase	Ultraviolet photoproducts
methanotrophs, 556 Selection	phage DNA repair, 72
evolution of antibiotic resistance gene function, 355	
Serine pathway	Vertebrates
methanotrophs, 556	virus transmission via germ line, 267
Sex pheromones	Vertical virus transmission, 267
S. faecalis, 409	Vibrio cholerae
Shigella sonnei D ₂ 371-48	cyclic nucleotides, 620
influence on phage T3 or T7 multiplication, 9	Vibrio harveyi cyclic nucleotides, 620
Sigmavirus transmission arthropod germ line, 267	Viruses
Single-celled organisms	vertical transmission, 267
vertical virus transmission, 267	Virus-host cell interactions
Soil	phages T3 and T7, 9
detection and enumeration of caulobacters, 123	VPg
Spumavirus transmission	picornavirion RNA, 287
vertebrate germ line, 267	X 7
Stalked cells	Yeasts
caulobacters, 123	methane-utilizing, 556

MICROBIOLOGICAL REVIEWS

VOLUME 45

copyright © 1981, american society for microbiology

CONTENTS Bacteriophage T3 and Bacteriophage T7 Virus-Host Cell Interactions. Detlev H. Krüger* and Cornelia Inhibition of Bacteriophage Replication by Extrachromosomal Genetic Elements. DONNA H. DUCKWORTH,* JERRY Deoxyribonucleic Acid Repair in Bacteriophage. CAROL Bernstein 72-98 Control of Growth and of the Nuclear Division Cycle in Neurospora crassa. Lilia Alberghina* and Emmapaola STURANI 99-122 The Caulobacters: Ubiquitous Unusual Bacteria. JEANNE Microbial Degradation of Petroleum Hydrocarbons: an Environ-VOLUME 45 ● JUNE 1981 ● NUMBER 2 CONTENTS Teichoic and Teichuronic Acids: Biosynthesis, Assembly, and Location. J. B. WARD 211-243 The Interferon Renaissance: Molecular Aspects of Induction and Action. Julian Gordon* and Michael A. Minks 244-266 Vertical Transmission of Viruses. C. A. Mims 267–286 Picornaviral Structure and Assembly. J. ROBERT PUTNAK AND Distribution of Isoprenoid Quinone Structural Types in Bacteria and Their Taxonomic Implications. MATTHEW D. Col-LINS AND DOROTHY JONES* 316-354 Evolution of Antibiotic Resistance Gene Function. ARTHUR L. Косн 355–378 VOLUME 45 ● SEPTEMBER 1981 ● NUMBER 3 CONTENTS Applied and Molecular Aspects of Insect Granulosis Viruses. KATHLEEN A. TWEETEN, LEE A. BULLA, JR., AND RICHARD

CONTENTS

Plasmids, Drug Resistance, and Gene Transfer in the Genus Streptococcus. Don B. Clewell
Regulation of Nitrogen Metabolism and Gene Expression in Fungi. GEORGE A. MARZLUF
Adenosine 3',5'-Phosphate in Fungi. MARTIN L. PALL 462-480
Erratum
Distribution of Isoprenoid Quinone Structural Types in Bacteria and Their Taxonomic Implications. MATTHEW D. COLLINS AND DOROTHY JONES
VOLUME 45 ● DECEMBER 1981 ● NUMBER 4
CONTENTS Structure and Function of the Reovirus genome. Wolfgang
К. Јокцік
Processing of Procaryotic Ribonucleic Acid. Peter Gegen- Heimer* and David Apirion 502-541
Succinate Dehydrogenase—a Comparative Review. Lars HEDERSTEDT* AND LARS RUTBERG 542-555
Methane-Oxidizing Microorganisms. I. J. Higgins,* D. J. Best, R. C. Hammond, and D. Scott
Antibiotic Resistance in Pathogenic and Producing Bacteria, with Special Reference to β -Lactam Antibiotics. HIROSHI
Ogawara 591-619
Cyclic Nucleotides in Procaryotes. James L. Botsford 620-642
* Asterisk refers to person to whom inquiries regarding the paper should be addressed.

INDEX TO DATE OF ISSUE

Month	Date of Issue	Pages
March	31 March 1981	1-209
June	12 June 1981	211-378
September	22 September 1981	379-481
December	29 December 1981	483-642

1982 Student Membership — American Society for Microbiology

1913 I St., NW, Washington, DC 20006

Any regularly matriculated student major in microbiology or a related field is eligible for election as a Student Member. Student Members have all privileges of membership except the right to vote and hold office in the Society.

Student Members receive the monthly ASM News and are entitled to subscribe to the Society's journals at member rates.

Memberships are initiated and renewed in January of each year. Unless there are directions to the contrary, membership

nominations received prior to November 1 will be credited to the current year, and back issues of the selected publications for

the current year will be furnished if available. Nominations received after November 1 will become effective the following January. City ______ State _____ Zip Code _____ Phone No. _____ Highest Degree ______ Yr. of Birth _____ _____ Sex ____ School Major field of study ____ Signature of Nominee ____ Signature of chairman of major dept. * Nominated by: (Society members) * If the department chairman is a member of the Society, only one additional nominating signature is required. 1. Journals may be subscribed to at the following rates. Please enter the higher rate (column B) if you reside outside the U.S. and its possessions. R Journal of Bacteriology (JB)..... **\$3**5 \$43 ----Antimicrobial Agents and Chemotherapy (AA)..... \$27 \$25 \$30 _____ Applied and Environmental Microbiology (AE)..... \$15 _____ International Journal of Systematic Bacteriology (IJ)..... \$15 \$35 \$40 \$29 ____ \$26 Journal of Clinical Microbiology (JC)..... Microbiological Reviews (MR)..... \$14 **\$**15 **\$32** Infection and Immunity (IA)..... \$20 _ \$ 2.50 2 Dues (includes ASM News)..... 3. TOTAL and Remit....

RATES ARE FOR 1982 ONLY

Please enclose payment with application.

Prices are listed in U.S. dollars. Due to currency exchange difficulties and cost, foreign applicants in countries except Canada must remit in U.S. dollars by check or draft payable to ASM through a U.S. bank. Applicants from Canada may use checks drawn on Canadian Banks, but remittance must be made in U.S. dollars.